Diffusion process

For the marketing term, see Diffusion of innovations.

In probability theory, a branch of mathematics, a diffusion process is a solution to a stochastic differential equation. It is a continuous-time Markov process with almost surely continuous sample paths. Brownian motion, reflected Brownian motion and Ornstein–Uhlenbeck processes are examples of diffusion processes.

A sample path of a diffusion process models the trajectory of a particle embedded in a flowing fluid and subjected to random displacements due to collisions with molecules, which is called Brownian motion. The position of the particle is then random; its probability density function as a function of space and time is governed by an advection-diffusion equation.

Mathematical definition

A diffusion process is a Markov process with continuous sample paths for which the Kolmogorov forward equation is the Fokker-Planck equation.[1]

See also

References

  1. "9. Diffusion processes" (pdf). Retrieved October 10, 2011.
This article is issued from Wikipedia - version of the 5/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.