Evolution of color vision
Color vision, a proximate adaptation of the vision sensory modality, allows for the discrimination of light based on its wavelength components.
Invertebrates
Color vision requires a number of opsin molecules with different absorbance peaks, and at least three opsins were present in the ancestor of chelicerates and pancrustaceans; members of both these groups today possess color vision.[1]
Vertebrates
Researchers studying the opsin genes responsible for color-vision pigments have long known that four photopigment opsins exist in birds, reptiles and teleost fish.[2] This indicates that the common ancestor of tetrapods and amniotes (~360 million years ago) had tetrachromatic vision — the ability to see four dimensions of color (or three not counting brightness).[3]
Mammals
Today, most mammals possess dichromatic vision, corresponding to protanopia red–green color blindness. They can thus see violet, blue, green and yellow light, but cannot see ultraviolet, and deep red light.[4][5] This was probably a feature of the first mammalian ancestors, which were likely small, nocturnal, and burrowing.
At the time of the Cretaceous–Paleogene extinction event 66 million years ago, the burrowing ability probably helped mammals survive extinction. Mammalian species of the time had already started to differentiate, but were still generally small, comparable in size to shrews; this small size would have helped them to find shelter in protected environments.
Monotremes and Marsupials
It is postulated that some early monotremes, marsupials, and placentals were semiaquatic or burrowing, as there are multiple mammalian lineages with such habits today.
Any burrowing or semiaquatic mammal would have had additional protection from Cretaceous–Paleogene boundary (K–Pg boundary) environmental stresses.[6]
However, many such species evidently possessed poor color vision in comparison with non-mammalian vertebrate species of the time, including reptiles, birds, and amphibians.
Primates
Since the beginning of the Paleogene Period, surviving mammals enlarged, moving away by adaptive radiation from a burrowing existence and into the open, although most species kept their relatively poor color vision. Exceptions occur for some marsupials (which possibly kept their original color vision) and some primates—including humans. Primates, as an order of mammals, began to emerge around the beginning of the Paleogene Period.
Primates have re-developed trichromatic color vision since that time, by the mechanism of gene duplication, being under unusually high evolutionary pressure to develop color vision better than the mammalian standard. Ability to perceive red[7] and orange hues allows tree-dwelling primates to discern them from green. This is particularly important for primates in the detection of red and orange fruit, as well as nutrient-rich new foliage, in which the red and orange carotenoids have not yet been masked by chlorophyll.
Another theory is that detecting skin flushing and thereby mood may have influenced the development of primate trichromate vision. The color red also have other effects on primate and human behavior as discussed in the color psychology article.[8]
Today, among simians, the catarrhines (Old World monkeys and apes, including humans) are routinely trichromatic—meaning that both males and females possess three opsins, sensitive to short-wave, medium-wave, and long-wave light[3]—while, conversely, only a small fraction of platyrrhine primates (New World monkeys) are trichromats.[9]
See also
References
- ↑ Koyanagi, M.; Nagata, T.; Katoh, K.; Yamashita, S.; Tokunaga, F. (2008). "Molecular Evolution of Arthropod Color Vision Deduced from Multiple Opsin Genes of Jumping Spiders". Journal of Molecular Evolution. 66 (2): 130–137. doi:10.1007/s00239-008-9065-9. PMID 18217181.
- ↑ Yokoyama, S., and B. F. Radlwimmer. 2001. The molecular genetics and evolution of red and green color vision in vertebrates. Genetics Society of America. 158: 1697-1710.
- 1 2 Bowmaker, J. K. (1998). "Evolution of colour vision in vertebrates". Eye. 12 (3b): 541–547. doi:10.1038/eye.1998.143. PMID 9775215.
- ↑ http://jov.arvojournals.org/article.aspx?articleid=2121452
- ↑ http://www.neitzvision.com/content/publications/1989-Neitz-Color_vision_in_dog-VisNeuro.pdf
- ↑ Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004). "Survival in the first hours of the Cenozoic" (PDF). GSA Bulletin. 116 (5–6): 760–768. doi:10.1130/B25402.1. Retrieved 2016-01-06.
- ↑ Dulai, K. S.; von Dornum, M.; Mollon, J. D.; Hunt, D. M. (1999). "The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates". Genome Research. 9 (7): 629–638. doi:10.1101/gr.9.7.629. PMID 10413401.
- ↑ Diana Widermann, Robert A. Barton, and Russel A. Hill. Evolutionary perspectives on sport and competition. In Roberts, S. C. (2011). Roberts, S. Craig, ed. "Applied Evolutionary Psychology". Oxford University Press. doi:10.1093/acprof:oso/9780199586073.001.0001. ISBN 9780199586073.
- ↑ Surridge, A. K., and D. Osorio. 2003. Evolution and selection of trichromatic vision in primates. Trends in Ecol. and Evol. 18: 198-205.
- Gengo Tanaka, Andrew R. Parker, Yoshikazu Hasegawa, David J. Siveter, Ryoichi Yamamoto, Kiyoshi Miyashita, Yuichi Takahashi, Shosuke Ito, Kazumasa Wakamatsu, Takao Mukuda, Marie Matsuura, Ko Tomikawa, Masumi Furutani, Kayo Suzuki & Haruyoshi Maeda (23 December 2014). "Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish". Nature Communications. 5. doi:10.1038/ncomms6920.