Whitney immersion theorem

In differential topology, the Whitney immersion theorem states that for , any smooth -dimensional manifold (required also to be Hausdorff and second-countable) has a one-to-one immersion in Euclidean -space, and a (not necessarily one-to-one) immersion in -space. Similarly, every smooth -dimensional manifold can be immersed in the -dimensional sphere (this removes the constraint).

The weak version, for , is due to transversality (general position, dimension counting): two m-dimensional manifolds in intersect generically in a 0-dimensional space.

Further results

Massey went on to prove that every n-dimensional manifold is cobordant to a manifold that immerses in where is the number of 1's that appear in the binary expansion of . In the same paper, Massey proved that for every n there is manifold (which happens to be a product of real projective spaces) that does not immerse in . The conjecture that every n-manifold immerses in became known as the Immersion Conjecture which was eventually solved in the affirmative by Ralph Cohen (Cohen 1985).

See also

References

External links


This article is issued from Wikipedia - version of the 3/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.