Von Neumann's inequality

In operator theory, von Neumann's inequality, due to John von Neumann, states that, for a fixed contraction T, the polynomial functional calculus map is itself a contraction.

Formal statement

For a contraction T acting on a Hilbert space and a polynomial p, then the norm of p(T) is bounded by the supremum of |p(z)| for z in the unit disk."[1]

Proof

The inequality can be proved by considering the unitary dilation of T, for which the inequality is obvious.

Generalizations

This inequality is a specific case of Matsaev's conjecture. That is that for any polynomial P and contraction T on

where S is the right-shift operator. The von Neumann inequality proves it true for and for and it is true by straightforward calculation. S.W. Drury has recently shown that the conjecture fails in the general case.[2]

References

  1. Department of Mathematics, Vanderbilt University Colloquium, AY 2007-2008
  2. S.W. Drury, "A counterexample to a conjecture of Matsaev", Linear Algebra and its Applications, Volume 435, Issue 2, 15 July 2011, Pages 323-329
This article is issued from Wikipedia - version of the 6/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.