Stanton number
The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Edward Stanton (1865–1931).[1] It is used to characterize heat transfer in forced convection flows.
where
- h = convection heat transfer coefficient
- ρ = density of the fluid
- cp = specific heat of the fluid
- u = speed of the fluid
It can also be represented in terms of the fluid's Nusselt, Reynolds, and Prandtl numbers:
where
- Nu is the Nusselt number;
- Re is the Reynolds number;
- Pr is the Prandtl number.[2]
The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).
Mass Transfer
Using the heat-mass transfer analogy, a mass transfer St equivalent can be found using the Sherwood number and Schmidt number in place of the Nusselt number and Prandtl number, respectively.
where
- St_m is the mass Stanton number;
- Sh is the Sherwood number;
- Re is the Reynolds number;
- Sc is the Schmidt number;
- is defined based on a concentration difference (kg s−1 m−2);
- is the component density of the species in flux.
Boundary Layer Flow
The Stanton number is a useful measure of the rate of change of the thermal energy deficit (or excess) in the boundary layer due to heat transfer from a planar surface. If the enthalpy thickness is defined as [3]
Then the Stanton number is equivalent to [4]
for boundary layer flow over a flat plate with a constant surface temperature and properties.
Correlations using Reynolds-Colburn Analogy
Using the Reynolds-Colburn analogy for turbulent flow with a thermal log and viscous sub layer model, the following correlation for turbulent heat transfer for is applicable [5]
where
References
- ↑ The Victoria University of Manchester’s contributions to the development of aeronautics
- ↑ Bird, Stewart, Lightfoot (2007). Transport Phenomena. New York: John Wiley & Sons. p. 428. ISBN 978-0-470-11539-8.
- ↑ Reynolds Number
- ↑ Kays, Crawford, Weigand (2005). Convective Heat and Mass Transfer. McGraw-Hill.
- ↑ Lienhard, Lienhard (2012). A Heat Transfer Texbook. Phlogiston Press.