Quantum topology

Quantum topology is a branch of mathematics that connects quantum mechanics with low-dimensional topology.

Dirac notation provides a viewpoint of quantum mechanics which becomes amplified into a framework that can embrace the amplitudes associated with topological spaces and the related embedding of one space within another such as knots and links in three-dimensional space. This bra–ket notation of kets and bras can be generalised, becoming maps of vector spaces associated with topological spaces that allow tensor products.[1]

Topological entanglement involving linking and braiding can be intuitively related to quantum entanglement.[1]

See also

References

  1. 1 2 Quantum Topology and Quantum Computing by Louis H. Kauffman

External links

This article is issued from Wikipedia - version of the 9/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.