Penicillium

Penicillium
Penicillium sp.
Scientific classification
Kingdom: Fungi
Phylum: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Trichocomaceae
Genus: Penicillium
Link (1809)
Type species
Penicillium expansum
Link (1809)
Species

over 300
List of Penicillium species

Synonyms[1]

Floccaria Grev. (1827)
Aspergilloides Dierckx (1901)
Walzia Sorokin (1871)
Pritzeliella Henn. (1903)

Penicillium (/ˌpɛnɪˈsɪlɪəm/) is a genus of ascomycetous fungi of major importance in the natural environment as well as food and drug production.

Some members of the genus produce penicillin, a molecule that is used as an antibiotic, which kills or stops the growth of certain kinds of bacteria inside the body. Other species are used in cheesemaking. According to the Dictionary of the Fungi (10th edition, 2008), the widespread genus contains over 300 species.[2]

Taxonomy

The genus was first described in the scientific literature by Johann Heinrich Friedrich Link in his 1809 work Observationes in ordines plantarum naturales, writing "Penicillium. Thallus e floccis caespitosis septatis simplicibus aut ramosis fertilibus erectis apice penicillatis", where penicillatis referred to "pencil-like" (referring to a Camel's hair pencil brush.[3][4] Link included three species—P. candidum, P. expansum, and P. glaucum—all of which produced a brush-like conidiophore (asexual fruiting structure). The common apple rot fungus P. expansum was selected as the type species.[5]

In a 1979 monograph, John I. Pitt divided Penicillium into four subgenera based on conidiophore morphology and branching pattern: Aspergilloides, Biverticillium, Furcatum, and Penicillium.[6]

Species

Various fungi including Penicillium and Aspergillus species growing in axenic culture
Some penicillium mold on mandarin oranges

Selected species include;

Etymology

The genus name is derived from the Latin root penicillum, meaning "painter's brush", and refers to the chains of conidia that resemble a broom.[7]

Characteristics

Penicillium Spp. under bright field microscopy (10 x 100 magnification) with lactophenol cotton blue stain

The thallus (mycelium) typically consists of a highly branched network of multinucleate, septate, usually colorless hyphae. Many-branched conidiophores sprout on the mycelia, bearing individually constricted conidiospores. The conidiospores are the main dispersal route of the fungi, and often are green in color.

Sexual reproduction involves the production of ascospores, commencing with the fusion of an archegonium and an antheridium, with sharing of nuclei. The irregularly distributed asci contain eight unicellular ascospores each.

Ecology

Species of Penicillium are ubiquitous soil fungi preferring cool and moderate climates, commonly present wherever organic material is available. Saprophytic species of Penicillium and Aspergillus are among the best-known representatives of the Eurotiales and live mainly on organic biodegradable substances. Commonly known in America as molds, they are among the main causes of food spoilage, especially species of subgenus Penicillium.[8] Many species produce highly toxic mycotoxins. The ability of these Penicillium species to grow on seeds and other stored foods depends on their propensity to thrive in low humidity and to colonize rapidly by aerial dispersion while the seeds are sufficiently moist.[9] Some species have a blue color, commonly growing on old bread and giving it a blue fuzzy texture.

Some Penicillium species affect the fruits and bulbs of plants, including P. expansum, apples and pears; P. digitatum, citrus fruits;[10] and P. allii, garlic.[11] Some species are known to be pathogenic to animals; P. corylophilum, P. fellutanum, P. implicatum, P. janthinellum, P. viridicatum, and P. waksmanii are potential pathogens of mosquitoes.[12] P. marneffei, which causes mortality in the Vietnamese bamboo rats, has become a common opportunistic infection of HIV-infected individuals in southeast Asia.[13]

Penicillium species are present in the air and dust of indoor environments, such as homes and public buildings. The fungus can be readily transported from the outdoors, and grow indoors using building material or accumulated soil to obtain nutrients for growth. Penicillium growth can still occur indoors even if the relative humidity is low, as long as there is sufficient moisture available on a given surface. A British study determined that Aspergillus- and Penicillium-type spores were the most prevalent in the indoor air of residential properties, and exceeded outdoor levels.[14] Even ceiling tiles can support the growth of Penicillium—as one study demonstrated—if the relative humidity is 85% and the moisture content of the tiles is greater than 2.2%.[15]

Some Penicillium species cause damage to machinery and the combustible materials and lubricants used to run and maintain them. For example, P. chrysogenum, P. steckii, P. notatum, P. cyclopium, and P. nalgiovensis affect fuels; P. chrysogenum, P. rubrum, and P. verrucosum cause damage to oils and lubricants; P. regulosum damages optical and protective glass.[16]

Economic value

Core structure of penicillin
Griseofulvin

Several species of the genus Penicillium play a central role in the production of cheese and of various meat products. To be specific, Penicillium molds are found in Blue cheese. Penicillium camemberti and Penicillium roqueforti are the molds on Camembert, Brie, Roquefort, and many other cheeses. Penicillium nalgiovense is used to improve the taste of sausages and hams, and to prevent colonization by other molds and bacteria.[17]

In addition to their importance in the food industry, species of Penicillium and Aspergillus serve in the production of a number of biotechnologically produced enzymes and other macromolecules, such as gluconic, citric, and tartaric acids, as well as several pectinases, lipase, amylases, cellulases, and proteases. Some Penicillium species have shown potential for use in bioremediation because of their ability to break down a variety of xenobiotic compounds.[18] Penicillium also prevents bacteria from affecting the body.

The genus includes a wide variety of species molds that are the source molds of major antibiotics. Penicillin, a drug produced by P. chrysogenum (formerly P. notatum), was accidentally discovered by Alexander Fleming in 1929, and found to inhibit the growth of Gram-positive bacteria (see beta-lactams). Its potential as an antibiotic was realized in the late 1930s, and Howard Florey and Ernst Boris Chain purified and concentrated the compound. The drug's success in saving soldiers in World War II who had been dying from infected wounds resulted in Fleming, Florey and Chain jointly winning the Nobel Prize in Medicine in 1945.[19]

Griseofulvin is an antifungal drug and a potential chemotherapeutic agent[20] that was discovered in P. griseofulvum.[21] Additional species that produce compounds capable of inhibiting the growth of tumor cells in vitro include: P. pinophilum,[22] P. canescens,[23] and P. glabrum.[23]

Reproduction

Although many eukaryotes are able to reproduce sexually, as much as 20% of fungal species had been thought to reproduce exclusively by asexual means. However recent studies have revealed that sex occurs even in some of the supposedly asexual species. For example, sexual capability was recently shown for the fungus Penicillium roqueforti, used as a starter for blue cheese production.[24] This finding was based, in part, on evidence for functional mating type (MAT) genes that are involved in fungal sexual compatibility, and the presence in the sequenced genome of most of the important genes known to be involved in meiosis. Penicillium chrysogenum is of major medical and historical importance as the original and present-day industrial source of the antibiotic penicillin. The species was considered asexual for more than 100 years despite concerted efforts to induce sexual reproduction. However, in 2013, Bohm et al.[25] finally demonstrated sexual reproduction in P. chrysogenum.

Penicillium marneffei, an AIDS-associated pathogen, was also previously assumed to reproduce exclusively by asexual means. This assumption was largely based on the highly clonal population structure of this species. However, recent work has revealed that the genes required for meiosis are present in P. marneffei.[26] This and other evidence indicated that mating and genetic recombination does occur in this species. It was concluded that P. marneffei is sexually reproducing, but recombination is most likely to occur across spatially and genetically limited distances in natural populations resulting in a highly clonal population structure.[26]

These findings with Penicillium species are consistent with accumulating evidence from studies of other eukaryotic species that sex was likely present in the common ancestor of all eukaryotes.[27][28] Furthermore, these recent results suggest that sex can be maintained even when very little genetic variability is produced.

References

  1. "Penicillium Link 1809". MycoBank. International Mycological Association. Retrieved 2011-07-14.
  2. Kirk, PM; Cannon, PF; Minter, DW; Stalpers, JA (2008). Dictionary of the Fungi (10th ed.). Wallingford, UK: CABI. p. 505. ISBN 978-0-85199-826-8.
  3. Identification and nomenclature of the genus Penicillium, C.M. Visagie1, J. Houbraken1, , , J.C. Frisvad2, , , S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, R.A. Samson, 22 September 2014, http://dx.doi.org/10.1016/j.simyco.2014.09.001
  4. Link, JHF (1809). "Observationes in ordines plantarum naturales. Dissertatio I". Magazin der Gesellschaft Naturforschenden Freunde Berlin (in Latin). 3: 3–42.
  5. Samson, R.A.; Pitt, J.I. (1985). Advances in Penicillium and Aspergillus Systematics. Springer. ISBN 978-0-306-42222-5.
  6. Pitt, J.I. (1979). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press. ISBN 978-0-12-557750-2.
  7. Haubrich, W.S. (2003). Medical Meanings: A Glossary of Word Origins (2nd ed.). Philadelphia, Pennsylvania: American College of Physicians. p. 175. ISBN 978-1-930513-49-5. Retrieved 2013-02-03.
  8. Samson RA, Seifert KA, Kuijpers AF, Houbraken JA, Frisvad JC (2004). "Phylogenetic analysis of Penicillium subgenus Pencillium using partial beta-tubulin sequences" (PDF). Studies in Mycology. 49: 175–200.
  9. Pitt JI, Basílico JC, Abarca ML, López C.; Basílico; Abarca; López (2000). "Mycotoxins and toxigenic fungi". Medical Mycology. 38 (Suppl 1): 41–46. doi:10.1080/714030911. PMID 11204163.
  10. Balgrie, B. (2003). "Taints and Off-flavours in Food". CRC Press: 134. ISBN 978-1-85573-449-4. Retrieved 2013-02-03.
  11. Valdez JG, Makuch MA, Ordovini AF, Masuelli RW, Overy DP, Piccolo RJ.; Makuch; Ordovini; Masuelli; Overy; Piccolo (2006). "First report of Penicillium allii as a field pathogen of garlic (Allium sativum)". Plant Pathology. 55 (4): 583. doi:10.1111/j.1365-3059.2006.01411.x.
  12. da Costa, GL; de Moraes, AM; de Oliveira, PC (1998). "Pathogenic action of Penicillium species on mosquito vectors of human tropical diseases". Journal of Basic Microbiology. 38 (5–6): 337–41. doi:10.1002/(SICI)1521-4028(199811)38:5/6<337::AID-JOBM337>3.0.CO;2-N. PMID 9871331.
  13. Ustianowski AP, Sieu TP, Day JN.; Sieu; Day (2008). "Penicillium marneffei infection in HIV". Current Opinion in Infectious Diseases. 21 (1): 31–36. doi:10.1097/QCO.0b013e3282f406ae. PMID 18192783.
  14. Fairs, A.; Wardlaw, AJ; Pashley, CH (2010). "Guidelines on ambient intramural airborne fungal spores". Journal of Investigational Allergology and Clinical Immunology. 20 (6): 490–98. PMID 21243933. Missing |last3= in Authors list (help)
  15. Chang, JCS; Foarde, KK; Vanosdell, DW. (1995). "Growth evaluation of fungi (Penicillium and Aspergillus spp.) on ceiling tiles". Atmospheric Environment. 29 (17): 2331 37. doi:10.1016/1352-2310(95)00062-4.
  16. Semenov SA, Gumargalieva KZ, Zaikov GE (2003-08-01). Biodegradation and Durability of Materials Under the Effect of Microorganisms (New Concepts in Polymer Science). V.S.P. Intl Science. pp. 34–35. ISBN 978-90-6764-388-7.
  17. Marianski, S.; Marianski, A. (2009). The Art of Making Fermented Sausages. Seminole, Florida: Bookmagic. p. 47. ISBN 978-0-9824267-1-5. Retrieved 2013-02-03.
  18. Leitão, A.L. (2009). "Potential of Penicillium species in the bioremediation field" (PDF). International Journal of Environmental Research and Public Health. 6 (4): 1393–417. doi:10.3390/ijerph6041393. PMC 2681198Freely accessible. PMID 19440525.
  19. Rifkind, D.; Freeman, G. (2005). The Nobel Prize Winning Discoveries in Infectious Diseases. London, UK: Academic Press. pp. 43–46. ISBN 978-0-12-369353-2. Retrieved 2013-02-03.
  20. Singh P, Rathinasamy K, Mohan R, Panda D.; Rathinasamy; Mohan; Panda (2008). "Microtubule assembly dynamics: an attractive target for anticancer drugs". IUBMB Life. 60 (6): 368–75. doi:10.1002/iub.42. PMID 18384115.
  21. De Carli, L.; Larizza, L. (1988). "Griseofulvin". Mutation Research. 195 (2): 91–126. doi:10.1016/0165-1110(88)90020-6. PMID 3277037.
  22. Nicoletti R, Manzo E, Ciavatta ML.; Manzo; Ciavatta (2009). "Occurrence and bioactivities of funicone-related compounds". International Journal of Molecular Sciences. 10 (4): 1430–44. doi:10.3390/ijms10041430. PMC 2680625Freely accessible. PMID 19468317.
  23. 1 2 Nicoletti, R.; Buommino, E.; De Filippis, A.; Lopez-Gresa, M.; Manzo, E.; Carella, A; Petrazzuolo, M; Tufano, M.A. (2009). "Bioprospecting for antagonistic Penicillium strains as a resource of new antitumor compounds". World Journal of Microbiology. 24 (2): 185–95. doi:10.1007/s11274-007-9455-y.
  24. Ropars J, Dupont J, Fontanillas E, Rodríguez de la Vega RC, Malagnac F, Coton M, Giraud T, López-Villavicencio M; Dupont; Fontanillas; Rodríguez de la Vega RC; Malagnac; Coton; Giraud; López-Villavicencio (2012). "Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti". PLoS ONE. 7 (11): e49665. doi:10.1371/journal.pone.0049665. PMC 3504111Freely accessible. PMID 23185400.
  25. Böhm J, Hoff B, O'Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kück U; Hoff; O'Gorman; Wolfers; Klix; Binger; Zadra; Kürnsteiner; Pöggeler; Dyer; Kück (January 2013). "Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum". Proc. Natl. Acad. Sci. U.S.A. 110 (4): 1476–81. doi:10.1073/pnas.1217943110. PMC 3557024Freely accessible. PMID 23307807.
  26. 1 2 Henk DA, Shahar-Golan R, Devi KR, Boyce KJ, Zhan N, Fedorova ND, Nierman WC, Hsueh PR, Yuen KY, Sieu TP, Kinh NV, Wertheim H, Baker SG, Day JN, Vanittanakom N, Bignell EM, Andrianopoulos A, Fisher MC; Shahar-Golan; Devi; Boyce; Zhan; Fedorova; Nierman; Hsueh; Yuen; Sieu; Kinh; Wertheim; Baker; Day; Vanittanakom; Bignell; Andrianopoulos; Fisher (2012). "Clonality despite sex: the evolution of host-associated sexual neighborhoods in the pathogenic fungus Penicillium marneffei". PLoS Pathog. 8 (10): e1002851. doi:10.1371/journal.ppat.1002851. PMC 3464222Freely accessible. PMID 23055919.
  27. Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM; Pightling; Stefaniak; Schurko; Logsdon Jr (2008). "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLoS ONE. 3 (8): e2879. doi:10.1371/journal.pone.0002879. PMC 2488364Freely accessible. PMID 18663385.
  28. Bernstein H and Bernstein C (2013). Evolutionary Origin and Adaptive Function of Meiosis. In Meiosis: Bernstein C and Bernstein H, editors. ISBN 978-953-51-1197-9, InTech, http://www.intechopen.com/books/meiosis/evolutionary-origin-and-adaptive-function-of-meiosis
  29. "Names record: Penicillium Link". Index Fungorum. CAB International. Retrieved 2011-07-14.
Wikimedia Commons has media related to Penicillium.
Wikisource has the text of the 1921 Collier's Encyclopedia article Penicillium.
This article is issued from Wikipedia - version of the 11/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.