KSTAR
Type | Tokamak |
---|---|
Operation date | 2008– |
Major radius | 1.8 m |
Minor Radius | 0.5 m |
Magnetic field | 3.5 T (toroidal) |
Heating | 14 MW |
Plasma current | 2 MA |
Location | Daejeon, South Korea |
The KSTAR, or Korea Superconducting Tokamak Advanced Research is a magnetic fusion device being built at the National Fusion Research Institute in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy which will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995 but construction was delayed by the East Asian financial crisis which weakened the South Korean economy considerably; however the construction phase of the project was completed on September 14, 2007. First plasma occurred on July 15, 2008.[1] or more likely on June 30 2008.[2]
KSTAR will be one of the first research tokamaks in the world to feature fully superconducting magnets, which again will be of great relevance to ITER as this will also use SC magnets. The KSTAR magnet system consists of 16 niobium-tin direct current toroidal field magnets, 10 niobium-tin alternating current poloidal field magnets and 4 niobium-titanium alternating current poloidal field magnets. It is planned that the reactor will study plasma pulses of up to 20 seconds duration until 2011, when it will be upgraded to study pulses of up to 300 seconds duration. The reactor vessel will have a major radius of 1.8 m, a minor radius of 0.5 m, a maximum toroidal field of 3.5 tesla, and a maximum plasma current of 2 megaampere. As with other tokamaks, heating and current drive will be initiated using neutral beam injection, ion cyclotron resonance heating (ICRH), radio frequency heating and electron cyclotron resonance heating (ECRH). Initial heating power will be 8 megawatt from neutral beam injection upgradeable to 24 MW, 6 MW from ICRH upgradeable to 12 MW, and at present undetermined heating power from ECRH and RF heating. The experiment will use both hydrogen and deuterium fuels but not the deuterium-tritium mix which will be studied in ITER.
In 2012, it succeeded in maintaining high-temperature plasma (about 50 million degrees Celsius) for 17 seconds.
Timeline
The design was based on Tokomak Physics Experiment which was based on Compact Ignition Tokamak design - See Robert J. Goldston.
- 1995 - Started Project KSTAR
- 1997 - JET of EU emits 17 MW energy from itself.
- 1998 - JT-60U went beyond energy junction successfully, and acknowledged possibility of commercialization of nuclear fusion.
- 2006 - Life span of 3 Fusion Reactors (JT-60U, JET, and DIII-D) are terminated.
- 2007, September - KSTAR's major devices are constructed.
- 2008, July - First plasma occurred. Maintenance time: 0.865 seconds, Temperature: 2×106 K
- 2009 - Maintained 320,000A plasma for 3.6 seconds.
- 2010, November - First H-mode plasma run.[3]
- 2011 - Maintained high-temperature plasma for 5.2 seconds, Temperature: ~50×106 K, successfully fully deterred ELM (Edge-Localized Mode), first ever in the World.
- 2012 - Maintained high-temperature plasma for 17 seconds, Temperature: 50×106 K
- 2013 - Maintained high-temperature plasma for 20 seconds, Temperature: 50×106 K
- 2014 - Maintained high-temperature plasma for 48 seconds, and successfully fully deterred ELM for 5 seconds.
References
External links
Wikinews has related news: KSTAR tokamak test reactor sees first plasma |
- KSTAR homepage
- English KSTAR homepage
- KSTAR Project Status PDF (undated - seems to be 2001. Includes slide-13 construction schedule to end 2004 and slide-16 operation from 2005 with upgrade planned 2010-11.)
- KSTAR Assembly Status, October 2006 PDF
- Status and Result of the KSTAR Upgrade for the 2010’s Campaign
- KSTAR ICRF transmission line system upgrade for load resilient operation. Jan 2013