Trivial topology

In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such a space is sometimes called an indiscrete space. Intuitively, this has the consequence that all points of the space are "lumped together" and cannot be distinguished by topological means; it belongs to a pseudometric space in which the distance between any two points is zero.

The trivial topology is the topology with the least possible number of open sets, since the definition of a topology requires these two sets to be open. Despite its simplicity, a space X with more than one element and the trivial topology lacks a key desirable property: it is not a T0 space.

Other properties of an indiscrete space Xmany of which are quite unusualinclude:

In some sense the opposite of the trivial topology is the discrete topology, in which every subset is open.

The trivial topology belongs to a uniform space in which the whole cartesian product X × X is the only entourage.

Let Top be the category of topological spaces with continuous maps and Set be the category of sets with functions. If F : TopSet is the functor that assigns to each topological space its underlying set (the so-called forgetful functor), and G : SetTop is the functor that puts the trivial topology on a given set, then G is right adjoint to F. (The functor H : SetTop that puts the discrete topology on a given set is left adjoint to F.)

See also

References

This article is issued from Wikipedia - version of the 3/14/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.