Gerbaldi's theorem
In linear algebra and projective geometry, Gerbaldi's theorem, proved by Gerbaldi (1882), states that one can find six pairwise apolar linearly independent nondegenerate ternary quadratic forms. These are permuted by the Valentiner group.
References
- Gerbaldi, Francesco (1882), "Sui gruppi di sei coniche in involuzione", Torino Atti (in Italian), XVII: 566–580, JFM 14.0537.02
This article is issued from Wikipedia - version of the 2/5/2012. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.