Environmental issues with salmon

Spawning sockeye salmon in Becharof Creek, Becharof Wilderness, Alaska

Salmon population levels are of concern in the Atlantic and in some parts of the Pacific. Salmon fishery stocks are still abundant, and catches have been on the rise in recent decades, after the state initiated limitations in 1972.[1][2] Some of the most important Alaskan salmon sustainable wild fisheries are located near the Kenai River, Copper River, and in Bristol Bay. Fish farming of Pacific salmon is outlawed in the United States Exclusive Economic Zone, however, there is a substantial network of publicly funded hatcheries,[3] and the State of Alaska's fisheries management system is viewed as a leader in the management of wild fish stocks. In Canada, returning Skeena River wild salmon support commercial, subsistence and recreational fisheries, as well as the area's diverse wildlife on the coast and around communities hundreds of miles inland in the watershed. The status of wild salmon in Washington is mixed. Out of 435 wild stocks of salmon and steelhead, only 187 of them were classified as healthy; 113 had an unknown status, 1 was extinct, 12 were in critical condition and 122 were experiencing depressed populations.[4]

Environmental pressures

All species of Pacific salmon (not including steelhead) die shortly after spawning. This one was photographed at a spawning site along Eagle Creek in Oregon.

The population of wild salmon declined markedly in recent decades, especially North Atlantic populations which spawn in the waters of western Europe and eastern Canada, and wild salmon in the Snake and Columbia River system in northwestern United States. The decline is attributed to the following factors:

This article is
one of a series on
Commercial fish
Large pelagic
billfish, bonito
mackerel, salmon
shark, tuna

Forage
anchovy, herring
menhaden, sardine
shad, sprat

Demersal
cod, eel, flatfish
pollock, ray
Mixed
carp, tilapia

Fishery pressures

A great threat to Pacific salmon conservation is commercial fishing. There are many methods of harvest for the commercial salmon fishing industry, such as trolling, seining, and gillnetting. Gillnets are an extremely size-selective method of harvest, where a long net is placed in the path of the salmon’s migration to their natal stream in hopes of entangling the salmon for commercial harvest. Fish too small to be caught pass through the net, fish too large cannot be entangled, only catching fish that fall somewhere in between. By selectively harvesting certain sizes of fish, governed by the mesh-size of the gillnet, some age-class and length-class fish are selectively removed from the population, progressively leaving phenotypically smaller spawners. Fecundity generally decreases with length. So, smaller fish produce fewer eggs than larger fish.[12] There is also concern regarding the genetic information passed down from the fish. If the majority of spawning fish in a particular salmon run has gotten smaller due to the size-selective fishing methods, the run could eventually evolve to become smaller.

Gillnets

Gillnets are designed to harvest a specific sized fish. For example, Washington Department of Fish and Wildlife's 2010 Commercial Regulations had a 7-inch (180 mm) minimum mesh size restriction for Chinook, and a 5-inch (130 mm) minimum – 5.5-inch (140 mm) maximum for sockeye.[13] Possible problems arising from this selective harvest are smaller reproducing adult fish, as well as the unexpected mortality of the fish which sustain injuries from the gillnet but are not retained in the fishery. Most salmon populations include several age classes, allowing for fish of different ages, and sizes, to reproduce with each other. A recent 2009 study looked at 59 years of catch and escapement data of Bristol Bay sockeye to determine age and size at maturity trends attributable to the selectivity of commercial gillnet harvests. The study found that the larger females (>550 mm) of all age classes were most susceptible to harvest.[12] The study suggests that smaller, younger fish were more likely to successfully traverse the gillnet fishery and reproduce than the larger fish. The study also found that the average length of sockeye harvested from 1946–2005 was 8 mm larger than the sockeye who escaped the gillnet fishery to spawn, reducing the fecundity of the average female by 5%, or 104 eggs.[12]

If a salmon enters a gillnet, but manages to escape, it often sustains injuries. These injuries can lead to a lower degree of reproductive success. A study aimed at quantifying mortality of Bristol Bay sockeye salmon due to gillnet-related injuries found that 11 – 29% of sockeye sustained fishery-related injuries attributable to gillnets, 51% of those fish were expected to not reproduce.[14]

North America

The Columbia River salmon population is now less than 3% of what it was when Lewis and Clark arrived at the river.[15] Salmon canneries established by settlers beginning in 1866 had a strong negative impact on the salmon population. In his 1908 State of the Union address, U.S. President Theodore Roosevelt observed that the fisheries were in significant decline:[16][17]

The salmon fisheries of the Columbia River are now but a fraction of what they were twenty—five years ago, and what they would be now if the United States Government had taken complete charge of them by intervening between Oregon and Washington. During these twenty—five years the fishermen of each State have naturally tried to take all they could get, and the two legislatures have never been able to agree on joint action of any kind adequate in degree for the protection of the fisheries. At the moment the fishing on the Oregon side is practically closed, while there is no limit on the Washington side of any kind, and no one can tell what the courts will decide as to the very statutes under which this action and non—action result. Meanwhile very few salmon reach the spawning grounds, and probably four years hence the fisheries will amount to nothing; and this comes from a struggle between the associated, or gill—net, fishermen on the one hand, and the owners of the fishing wheels up the river.

The commercial salmon fisheries in California have been either severely curtailed or closed completely in recent years, due to critically low returns on the Klamath and or Sacramento Rivers, causing millions of dollars in losses to commercial fishermen.[18] Both Atlantic and Pacific salmon are popular sportfish.

Salmon populations now exist in all the Great Lakes. Coho stocks were planted in the late 1960s in response to the growing population of non-native alewife by the state of Michigan. Now Chinook (King), Atlantic, and Coho (silver) salmon are annually stocked in all Great Lakes by most bordering states and provinces. These populations are not self-sustaining and do not provide much in the way of a commercial fishery, but have led to the development of a thriving sportfishery.

Relief efforts

Several governments and nongovernmental organizations (NGOs) are sharing in research and habitat restoration efforts to relieve this situation.

Results overall show estuary problems exist for some rivers, but issues involving feeding grounds at sea are impacting populations as well. In 2008, returns were markedly improved for Atlantic salmon on both sides of the Atlantic Ocean, but no one knows if this is a temporary improvement or sign of a trend.

In the Pacific Northwest, one of the most notable relief efforts is the Puget Sound Partnership.[20] The Puget Sound Partnership is currently working to implement policy change at the local level to alter the fate of salmon. Salmon recovery is guided by implementation of the Puget Sound Salmon Recovery Plan, adopted by the National Oceanic and Atmospheric Administration (NOAA) in January 2007. This recovery plan was developed by Shared Strategy, a grassroots collaborative effort to protect and restore salmon runs across Puget Sound. The Puget Sound Partnership has now rehabilitated over 800 acres of salmon habitat and it plans to continue to fight nearshore development and human impact affecting important salmon ecosystems. The Partnership's Action Agenda plans to instigate the Elwha Dam removal, begin restoration of the Nisqually Estuary and removal of derelict Fishing gear, and continue with the current salmon Recovery Plan. In order to ensure the future of Pacific Northwest salmon, the Partnership continues to encourage Stormwater & Low Impact Development, and advocates the "Puget Sound Starts Here" public education program.

Another notable local relief effort is the People for Puget Sound. People for Puget Sound is a citizen group founded by Kathy Fletcher in 1991 working to restore the health of our local land and waters with help from volunteers in the Puget Sound basin.[21]

Sweden will stop salmon fishing in Baltic Sea in 2013 to protect it.[22]

References

  1. "1878–2010, Historical Commercial Salmon Catches and Exvessel Values". Alaska Department of Fish and Game. Retrieved 6 August 2011.
  2. Viechnicki, Joe (2011-08-03). "Pink salmon numbers record setting in early season". KRBD Public Radio in Ketchikan, Alaska. Retrieved 6 August 2011.
  3. low fish returns in Southeast this summer have been tough on the region's hatcheries. aprn.org (2008)
  4. Johnson, Thom H.; Lincoln, Rich; Graves, Gary R. and Gibbons, Robert G. "Status of Wild Salmon and Steelhead Stocks in Washington State". In Stouder, Deanna J.; Bisson, Peter A. and Naiman, Robert J. Pacific Salmon and Their Ecosystems: Status and Future Options. Springer. pp. 127–144. doi:10.1007/978-1-4615-6375-4_11. ISBN 978-1-4615-6375-4.
  5. Scientific Evidence of Sea Lice from Fishfarms Seriously Harming Wild Stocks. saveourskeenasalmon.org
  6. Stokstad, E. (2007). "Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon". Science. 318 (5857): 1711. doi:10.1126/science.318.5857.1711. PMID 18079376.
  7. Moscrip, A., Montgomery, D. (1997). "Urbanization, Flood Frequency, and Salmon Abundance in Puget Lowland Streams". Journal of the American Water Resources Association. 33 (6): 1289. doi:10.1111/j.1752-1688.1997.tb03553.x.
  8. Riley, W.D. (2007). "Aquaculture : Seasonal downstream movements of juvenile Atlantic salmon, Salmo salar L., with evidence of solitary migration of smolts". Aquaculture. 273 (2–3): 194. doi:10.1016/j.aquaculture.2007.10.022.
  9. Pacific States Marine Fisheries Commission (1997) "When Salmon Are Dammed".
  10. Bradford, MJ., Irvine, JR. (2000). "Land use, fishing, climate change, and the decline of Thompson River, British Columbia, coho salmon". Canadian Journal of Fisheries and Aquatic Sciences. 57: 13. doi:10.1139/f99-283.
  11. Orr, Raymond I. (June 18, 2003) "Northwest Salmon Make Legal Headway". Indian Country Today
  12. 1 2 3 Kendall, N. W.; Hard, J. J.; Quinn, T. P. (2009). "Quantifying six decades of fishery selection for size and age at maturity in sockeye salmon". Evolutionary Applications. 2 (4): 523–36. doi:10.1111/j.1752-4571.2009.00086.x. PMC 3352444Freely accessible. PMID 25567896.
  13. Washington Department of Fish and Wildlife. (2010) Puget Sound Commercial Salmon Regulations.
  14. Baker, Matthew R.; Schindler, Daniel E. (2009). "Unaccounted mortality in salmon fisheries: Non-retention in gillnets and effects on estimates of spawners". Journal of Applied Ecology. 46 (4): 752. doi:10.1111/j.1365-2664.2009.01673.x.
  15. "Endangered Salmon". U.S. Congressman Jim McDermott. Archived from the original on 2006-11-15. Retrieved 2006-11-17.
  16. "Columbia River History: Commercial Fishing". Northwest Power and Conservation Council. 2010. Retrieved January 26, 2012.
  17. Roosevelt, Theodore (December 8, 1908). "State of the Union Address Part II by Theodore Roosevelt". Retrieved 31 January 2012.
  18. Hackett, S.; D. Hansen. "Cost and Revenue Characteristics of the Salmon Fisheries in California and Oregon". Retrieved 2009-06-01.
  19. "Project Bear Lake". Retrieved 2007-02-03.
  20. Puget Sound Partnership. Psp.wa.gov. Retrieved on 2016-10-26.
  21. People For Puget Sound – WEC. Pugetsound.org. Retrieved on 2016-10-26.
  22. Suomen Luonto 1/2012 (27.1.2012) page 10(Finnish)

Further reading

External links

This article is issued from Wikipedia - version of the 11/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.