Dunham expansion

In quantum chemistry, the Dunham expansion is an expression for the rotational-vibrational energy levels of a diatomic molecule: [1]

where v and J are the vibrational and rotational quantum numbers. The constant coefficients are called Dunham parameters with representing the electronic energy. The expression derives from a semiclassical treatment of a perturbational approach to deriving the energy levels.[2] The Dunham parameters are typically calculated by a least-squares fitting procedure of energy levels with the quantum numbers.

Relation to conventional band spectrum constants

This table adapts the sign conventions from the book of Huber and Herzberg. [3]

See also

References

  1. Dunham, J. L. (1932). "The Energy Levels of a Rotating Vibrator". Phys.Rev. 41: 721–731. doi:10.1103/PhysRev.41.721.
  2. Inostroza, N.; J.R. Letelier; M.L. Senent (2010). "On the numerical determination of Dunham's coefficients: An application to X1 R + HCl isotopomers". Journal of Molecular Structure: THEOCHEM. 947: 40–44. doi:10.1016/j.theochem.2010.01.037.
  3. Huber, K.P.; Herzberg, G. (1979). Molecular Spectra and Molecular Structure IV. Constants of diatomic molecules. New York: van Nostrand. ISBN 0-442-23394-9.
This article is issued from Wikipedia - version of the 12/30/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.