Dilithium
Names | |
---|---|
IUPAC name
Dilithium | |
Identifiers | |
14452-59-6 | |
3D model (Jmol) | Interactive image |
ChemSpider | 123254 |
PubChem | 139759 |
| |
| |
Properties | |
Li2 | |
Molar mass | 13.88 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Dilithium, Li2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li2 is known in the gas phase. It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 101 kJ mol−1 or 1.03eV in each bond.[1] The electron configuration of Li2 may be written as σ2.
It has been observed that 1% (by mass) of lithium in the vapor phase is in the form of dilithium. Molecules containing more than two lithium atoms covalently bonded together do exist, albeit in smaller quantities than dilithium. Clusters of lithium atoms also exist; the most common arrangement is Li6.
Being the lightest stable neutral homonuclear diatomic molecule after H2, and the helium dimer, dilithium is an extremely important model system for studying fundamentals of physics, chemistry, and electronic structure theory. It is the most thoroughly characterized compound in terms of the accuracy and completeness of the empirical potential energy curves of its electronic states. Analytic empirical potential energy curves have been constructed for the X-state,[2] a-state,[3] A-state,[4] c-state,[5] B-state,[6] 2d-state,[7] and l-state,[7] E-state,[8] and the F-state[9] mainly by professors Robert J. Le Roy[2][3][6] of University of Waterloo and Nikesh S. Dattani[2][3][4][5] of University of Oxford. The most reliable of these potential energy curves are of the Morse/Long-range variety.
Li2 potentials are often used to extract atomic properties. For example, the C3 value for atomic lithium extracted from the A-state potential of Li2 by Le Roy et al. in [2] is more precise than any previously measured atomic oscillator strength.[10] This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.
Electronic State | Spectroscopic Symbol | Molecular term symbol | Bond length in pm | Dissociation energy in cm−1 | # of bound vibrational levels | Scattering length in Angstroms | References |
---|---|---|---|---|---|---|---|
Ground | X | 11Σg+ | 267.298 74(19)[2] | 8 516.780 0(23)[2] | 39[2] | [2] | |
2 | a | 13Σu+ | 417.000 6(32)[3] | 333.779 5(62)[3] | 11[3] | [3] | |
3 | b | 13Πu | [7] | ||||
4 | A | 11Σg+ | 310.792 88(36)[2] | 9 353.179 5 (28)[2] | 118[2] | [2] | |
5 | c | 13Σg+ | 306.543 6(16)[3] | 7093.4926(86)[3] | 104[3] | ||
6 | B | 11Πu | 293.617 142(310)[6] | 298 4.444[6] | 118[6] | ||
7 | E | 3(?)1Σg+ | [8] |
See also
References
- ↑ Chemical Bonding, Mark J. Winter, Oxford University Press, 1994, ISBN 0-19-855694-2
- 1 2 3 4 5 6 7 8 9 10 11 12 Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. 131 (20): 204309. Bibcode:2009JChPh.131t4309L. doi:10.1063/1.3264688.
- 1 2 3 4 5 6 7 8 9 10 Dattani, N. S.; R. J. Le Roy (8 May 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a) and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy (Special Issue). 268: 199–210. arXiv:1101.1361. Bibcode:2011JMoSp.268..199.. doi:10.1016/j.jms.2011.03.030.
- 1 2 W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state, http://arxiv.org/abs/1309.5870
- 1 2 Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2 c-state". Phys. Rev. A. 87 (5): 052505. arXiv:1309.6662. Bibcode:2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505.
- 1 2 3 4 5 Huang, Yiye; R. J. Le Roy (8 October 2003). "Potential energy Lambda double and Born-Oppenheimer breakdown functions for the B1Piu "barrier" state of Li2". Journal of Chemical Physics. 119 (14): 7398–7416. Bibcode:2003JChPh.119.7398H. doi:10.1063/1.1607313.
- 1 2 3 Li, Dan; F. Xie; L. Li; A. Lazoudis; A. M. Lyyra (29 September 2007). "New observation of the, 13Δg, and 23Πg states and molecular constants with all 6Li2, 7Li2, and 6Li7Li data". Journal of Molecular Spectroscopy. 246 (2): 180–186. Bibcode:2007JMoSp.246..180L. doi:10.1016/j.jms.2007.09.008.
- 1 2 Jastrzebski, W; A. Pashov; P. Kowalczyk (22 June 2001). "The E-state of lithium dimer revised". Journal of Chemical Physics. 114 (24): 10725–10727. Bibcode:2001JChPh.11410725J. doi:10.1063/1.1374927.
- ↑ Pashov, A; W. Jastzebski; P. Kowalczyk (22 October 2000). "The Li2 F "shelf" state: Accurate potential energy curve based on the inverted perturbation approach". Journal of Chemical Physics. 113 (16): 6624–6628. Bibcode:2000JChPh.113.6624P. doi:10.1063/1.1311297.
- ↑ Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Mitroy, J. (2011). "Third-order perturbation theory for van der Waals interaction coefficients". Physical Review A. 84 (5). Bibcode:2011PhRvA..84e2502T. doi:10.1103/PhysRevA.84.052502. ISSN 1050-2947.
Further reading
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.