Atacama Large Millimeter Array

Atacama Large Millimeter Array
Organisation European Southern Observatory, National Science Foundation, National Institutes of Natural Sciences, Japan
Location(s) Llano de Chajnantor Observatory, Chile
Coordinates 23°01′09″S 67°45′12″W / 23.0193°S 67.7532°W / -23.0193; -67.7532Coordinates: 23°01′09″S 67°45′12″W / 23.0193°S 67.7532°W / -23.0193; -67.7532
Altitude 5,058.7 m (16,597 ft)
Telescope style radio telescope, radio interferometer[*]
Website www.almaobservatory.org

The Atacama Large Millimeter Array (ALMA) is an astronomical interferometer of radio telescopes in the Atacama desert of northern Chile. Since a high and dry site is crucial to millimeter and submillimeter wavelength operations,[1] the array has been constructed on the Chajnantor plateau at 5,000 metres (16,000 ft) altitude, near Llano de Chajnantor Observatory and Atacama Pathfinder Experiment. Consisting of 66 12-metre (39 ft) and 7-metre (23 ft) diameter radio telescopes observing at millimeter and submillimeter wavelengths, ALMA is expected to provide insight on star birth during the early universe and detailed imaging of local star and planet formation.

ALMA is an international partnership among Europe, the United States, Canada, Japan, South Korea, Taiwan, and Chile.[2] Costing about US$1.4 billion, it is the most expensive ground-based telescope in operation.[3][4] ALMA began scientific observations in the second half of 2011 and the first images were released to the press on 3 October 2011. The array has been fully operational since March 2013.[5][6]

Overview

The first two ALMA antennas linked together as an interferometer
Three ALMA antennas linked together as an interferometer for the first time
ALMA prototype-antennas at the ALMA test facility
Cerro Chascon at sunset
The ALMA correlator

The initial ALMA array is composed of 66 high-precision antennas, and operate at wavelengths of 0.3 to 9.6 mm. The array has much higher sensitivity and higher resolution than earlier submillimeter telescopes such as the single-dish James Clerk Maxwell Telescope or existing interferometer networks such as the Submillimeter Array or the Institut de Radio Astronomie Millimétrique (IRAM) Plateau de Bure facility.

The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable "zoom", similar in its concept to that employed at the Very Large Array (VLA) site in New Mexico, United States.

The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that will compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter's wide-field imaging capability.

History

On 4 March 2011, ten Antennas are installed at Chajnantor.

ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

The first step toward the creation of what would become ALMA came in 1997, when the NRAO (National Radio Astronomy Observatory) and the ESO (European Southern Observatory) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

A series of resolutions and agreements led to the choice of "Atacama Large Millimeter Array", or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. ("Alma" means "soul" in Spanish and "learned" or "knowledgeable" in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the NAOJ (National Astronomical Observatory of Japan) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.[7]

During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA's stringent requirements.

Funding

ALMA was initially a 50-50 collaboration between the National Radio Astronomy Observatory and European Southern Observatory (ESO) and later extended with the help of the other Japanese, Taiwanese, and Chilean partners.[8] ALMA is the largest and most expensive ground-based astronomical project, costing between US$1.4 and 1.5 billion.[3][9] (However, various space astronomy projects including Hubble Space Telescope, JWST, and several major planet probes have cost considerably more).

Partners

Assembly

Finished antenna.
Garage of the transporters.
Detail view of a transporter.

The complex was built primarily by European, U.S., Japanese, and Canadian companies and universities. Three prototype antennas have undergone evaluation at the Very Large Array since 2002.

General Dynamics C4 Systems and its SATCOM Technologies division was contracted by Associated Universities, Inc. to provide twenty-five of the 12m antennas,[10] while European manufacturer Thales Alenia Space provided the other twenty-five principal antennas[11] (in the largest-ever European industrial contract in ground-based astronomy). The first antenna was delivered in 2008, the last in 2011.

Transporting antennas

Transporting the 115 tonne antennas from the Operations Support Facility at 2900 m altitude to the site at 5000 m, or moving antennas around the site to change the array size, presents enormous challenges; as portrayed in the television documentary Monster Moves: Mountain Mission.[12] The solution chosen is to use two custom 28-wheel self-loading heavy haulers. The vehicles were made by Scheuerle Fahrzeugfabrik[13] in Germany and are 10 m wide, 20 m long and 6 m high, weighing 130 tonnes. They are powered by twin turbocharged 500 kW Diesel engines.

The transporters, which feature a driver's seat designed to accommodate an oxygen tank to aid breathing the thin high-altitude air, place the antennas precisely on the pads. The first vehicle was completed and tested in July 2007.[14] Both transporters were delivered to the ALMA Operations Support Facility (OSF) in Chile on 15 February 2008.

On 7 July 2008, an ALMA transporter moved an antenna for the first time, from inside the antenna assembly building (Site Erection Facility) to a pad outside the building for testing (holographic surface measurements).[15]

During Autumn 2009, the first three antennas were transported one-by-one to the Array Operations Site. At the end of 2009, a team of ALMA astronomers and engineers successfully linked three antennas at the 5,000-metre (16,000 ft) elevation observing site thus finishing the first stage of assembly and integration of the fledgling array. Linking three antennas allows corrections of errors that can arise when only two antennas are used, thus paving the way for precise, high-resolution imaging. With this key step, commissioning of the instrument began 22 January 2010.

On 28 July 2011, the first European antenna for ALMA arrived at the Chajnantor plateau, 5,000 meters above sea level, to join 15 antennas already in place from the other international partners. This was the number of antennas specified for ALMA to begin its first science observations, and was therefore an important milestone for the project.[16] In October 2012, 43 of the 66 antennas had been set up.

Scientific results

Images from initial testing

Antennae Galaxies composite of ALMA and Hubble observations
HL Tauri protoplanetary disk.[17]

By the summer of 2011, sufficient telescopes were operational during the extensive program of testing prior to the Early Science phase for the first images to be captured.[18] These early images give a first glimpse of the potential of the new array that will produce much better quality images in the future as the scale of the array continues to increase.

The target of the observation was a pair of colliding galaxies with dramatically distorted shapes, known as the Antennae Galaxies. Although ALMA did not observe the entire galaxy merger, the result is the best submillimeter-wavelength image ever made of the Antennae Galaxies, showing the clouds of dense cold gas from which new stars form, which cannot be seen using visible light.

Comet studies

On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).[19][20]

Planetary formation

An image of the protoplanetary disk surrounding HL Tauri (a very young T Tauri star[21] in the constellation Taurus) was made public in 2014, showing a series of concentric bright rings separated by gaps, indicating protoplanet formation. As of 2014, most theories did not expect planetary formation in such a young (100,000-1,000,000-year-old) system, so the new data spurred renewed theories of protoplanetary development. One theory suggests that the faster accretion rate might be due to the complex magnetic field of the protoplanetary disk.[22]

Global collaboration

The future ALMA array on Chajnantor (artist's rendering)

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences of Japan (NINS) in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA. Its director is Pierre Cox.

ALMA regional centre (ARC)

The ALMA regional centre (ARC) has been designed as an interface between user communities of the major contributors of the ALMA project and the JAO. Activates for operating the ARC have also divided into the three main regions involved (Europe, North America and East Asia). The European ARC (led by ESO) has been further subdivided into ARC-nodes [23] located across Europe in Bonn-Bochum-Cologne, Bologna, Ondřejov, Onsala, IRAM (Grenoble), Leiden and JBCA (Manchester).

The core purpose of the ARC is to assist the user community with the preparation of observing proposals, ensure observing programs meet their scientific goals efficiently, run a help-desk for submitting proposals and observing programs, delivering the data to principal investigators, maintenance of the ALMA data archive, assistance with the calibration of data and providing user feedback.[24]

Project detail

A starry night at the ALMA site.
2012 ALMA Video Compilation Released[25]

Atacama Compact Array

The Atacama Compact Array

The Atacama Compact Array, ACA, is a subset of 16 closely separated antennas that will greatly improve ALMA's ability to study celestial objects with a large angular size, such as molecular clouds and nearby galaxies. The antennas forming the Atacama Compact Array, four 12-meter antennas and twelve 7-meter antennas, were produced and delivered by Japan. In 2013, the Atacama Compact Array was named the Morita Array after Professor Koh-ichiro Morita, a member of the Japanese ALMA team and designer of the ACA, who died on 7 May 2012 in Santiago.[26]

Work stoppage

In August 2013, workers at the telescope went on strike to demand better pay and working conditions. This is one of the first strikes to affect an astronomical observatory. The work stoppage began after the Observatory failed to reach an agreement with the workers' union.[27][28][29][30] After 17 days an agreement was reached providing for reduced schedules and higher pay for work done at high altitude.[31][32]

Project timeline

The final ALMA antenna.[33]
Timeline
Date Activity
1995 ESO/NRAO/NAOJ joint site testing with Chile.
May 1998 Start of Phase 1 (Design & Development).
June 1999 European/U.S. Memorandum of Understanding for Design & Development.
February 2003 Final European / North American Agreement, with 50% of funding from ESO, and 50% of funding shared between USA and Canada.
April 2003 Testing of first prototype antenna begins at the ALMA Test Facility (ATF) site in Socorro, New Mexico.
November 2003 Groundbreaking ceremony at ALMA site.
September 2004 European, North American & Japanese draft agreement, with Japan providing new extensions to ALMA.
October 2004 Opening of Joint ALMA office, Santiago, Chile.
September 2005 Taiwan joins the ALMA Project through Japan.
July 2006 European, North American & Japanese amend agreement on the Enhanced ALMA.
April 2007 Arrival of first antenna in Chile.
February 2008 Arrival of the two ALMA transporters in Chile.
July 2008 First antenna movement with a transporter.
December 2008 Acceptance of the first ALMA antenna.
May 2009 First interferometry with two antennas at the Operations Support Facility (OSF).
September 2009 First move of an ALMA antenna to Chajnantor.
November 2009 Phase closure with three antennas at Chajnantor.
2010 Call for shared-risk Early Science proposals.
2011 September Start of Early Science Cycle 0. Sixteen 12-m antennas in the 12-m Array.
2013 January Start of Early Science Cycle 1. Thirty-two 12-m antennas in the 12-m Array.
2013 March 13 ALMA Inauguration.
2014 June Start of Early Science Cycle 2. Thirty-four 12-m antennas in the 12-m Array, nine 7-m antennas in the 7-m Array, and two 12-m antennas in the TP Array.

Videos and gallery

  1. ^ "A Digital Highway to ALMA". ESO Press Release. Retrieved 13 February 2013. 

See also

Wikimedia Commons has media related to Atacama Large Millimeter Array.

References

  1. Bustos, R.; Rubio, M.; Otárola, A.; et al. (2014). "Parque Astronómico de Atacama: An Ideal Site for Millimeter, Submillimeter, and Mid-Infrared Astronomy". Publications of the Astronomical Society of the Pacific. 126 (946): 1126. arXiv:1410.2451Freely accessible. Bibcode:2014PASP..126.1126B. doi:10.1086/679330.
  2. Long, Gideon (29 May 2016). "Alma telescope peers into space from Chile's mountains". BBC News. Retrieved 29 May 2016.
  3. 1 2 "ALMA Inauguration Heralds New Era of Discovery". ESO - European Southern Observatory. 13 March 2013. Retrieved 29 April 2014.
  4. Romero, Simon (7 April 2012). "At the End of the Earth, Seeking Clues to the Universe". New York Times. Retrieved 8 April 2012.
  5. "Alma telescope: Ribbon cut on astronomical giant". BBC. Retrieved 13 March 2013.
  6. Spie (2014). "Pierre Cox plenary: ALMA Update". SPIE Newsroom. doi:10.1117/2.3201407.14.
  7. Alejandro Peredo. "Ground breaking ceremony for the Atacama Large Millimeter Array (ALMA)". Retrieved 15 November 2014.
  8. "National Radio Astronomy Observatory - Legacy Content - ALMA (CV)". nrao.edu.
  9. Chile's ALMA probes for origins of universe Archived March 10, 2014, at the Wayback Machine., Associated Press
  10. "General Dynamics Receives $169 Million to Build 12-Meter Antennas for Advanced Radio Telescope". gdsatcom.com.
  11. ESO - 2005 Archived February 7, 2006, at the Wayback Machine.
  12. "Monster Moves, Season 5, Episode 6: Mountain Mission". Retrieved 17 March 2012.
  13. Scheuerle Fahrzeugfabrik
  14. "Giant truck set for sky-high task". BBC News. 30 July 2007. Retrieved 31 July 2007.
  15. July 2008 NRAO ALMA newsletter article by Dr. Al Wootten
  16. "European ALMA antenna brings total on Chajnantor to 16". ESO Organisation Release. 28 July 2011. Retrieved 29 July 2011.
  17. "Birth of Planets Revealed in Astonishing Detail in ALMA's 'Best Image Ever' - NRAO: Revealing the Hidden Universe". nrao.edu.
  18. "ALMA Open its Eyes". ALMA Press Release. 3 October 2011. Retrieved 4 October 2011.
  19. Zubritsky, Elizabeth; Neal-Jones, Nancy (11 August 2014). "RELEASE 14-038 - NASA's 3-D Study of Comets Reveals Chemical Factory at Work". NASA. Retrieved 12 August 2014.
  20. Cordiner, M.A.; et al. (11 August 2014). "Mapping the Release of Volatiles in the Inner Comae of Comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) Using the Atacama Large Millimeter/submillimeter Array". The Astrophysical Journal. 792 (1). arXiv:1408.2458Freely accessible. Bibcode:2014ApJ...792L...2C. doi:10.1088/2041-8205/792/1/L2. Retrieved 12 August 2014.
  21. Weintraub, David A.; Kastner, Joel H.; Whitney, Barbara A. (October 1995). "In Search of HL Tauri". The Astrophysical Journal Letters. 452: L141–L145. Bibcode:1995ApJ...452L.141W. doi:10.1086/309720.
  22. Stephens, Ian W.; Looney, Leslie W.; Kwon, Woojin; Fernández-López, Manuel; Hughes, A. Meredith; et al. (October 2014). "Spatially resolved magnetic field structure in the disk of a T Tauri star". Nature. 514 (7524): 597–599. arXiv:1409.2878Freely accessible. Bibcode:2014Natur.514..597S. doi:10.1038/nature13850.
  23. webteam@eso.org. "ARC-nodes". Retrieved 15 November 2014.
  24. webteam@eso.org. "ALMA regional centre". Retrieved 15 November 2014.
  25. "New 2012 ALMA Video Compilation Released". ESO Press Release. Retrieved 13 February 2013.
  26. "ALMA Compact Array Completed and Named After Japanese Astronomer". ESO Announcement. Retrieved 8 May 2013.
  27. Alejandro Peredo. "ALMA Observatory Statement". Retrieved 15 November 2014.
  28. "Sorry, we can't seem to find the page you're looking for.". 22 August 2013 via washingtonpost.com.
  29. "BBC News". BBC News. Retrieved 15 November 2014.
  30. "Huffington Post:". Retrieved 15 November 2014.
  31. "ALMA resumes operations after end of workers' strike". almaobservatory.org. Retrieved 11 May 2015.
  32. "17-Day ALMA Strike Ends in Resolution". Sky & Telescope. Retrieved 11 May 2015.
  33. "Final Antenna Delivered to ALMA". ESO Press Release. Retrieved 2 October 2013.

External links

This article is issued from Wikipedia - version of the 11/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.